试题
题目:
如图,E,F分别为等边△ABC的边AB,AC上的点,把△AEF沿EF折叠,点A恰好落在BC边上的点D处.已知BE=4,CF=2,设BD=x,则DC=
8
x
8
x
.(用含x的代数式表示)
答案
8
x
解:由折叠的性质可得出∠A=∠D=60°,
又∵∠EDC=∠B+∠BED(三角形外角的性质),
∴∠BED=∠CDF,
∴△BED∽△CDF,
故可得:
BE
DC
=
BD
CF
,即
4
DC
=
x
2
,
解得:DC=
8
x
.
故答案为:
8
x
.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);等边三角形的性质.
由折叠的性质可得出∠A=∠D=60°,再利用外角的性质∠EDC=∠B+∠BED,可得出∠BED=∠CDF,从而可判定△BED∽△CDF,利用相似三角形的对应边成比例可得出DC关于x的代数式.
此题考查了折叠的性质及相似三角形的判定与性质,解答本题的关键是得出△BED∽△CDF,难度一般,要注意相似三角形的对应边成比例.
数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )