答案

解:∵四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,
∴∠B=∠AEC=∠ADC=90°,AB=CD=AE,∠EAC=∠BAC,
∵AB∥CD,
∴∠DCA=∠BAC,
∴∠DCA=∠EAC,
∴FA=CF,
∵AE=CD,
∴DF=EF,
∴
=,
∵∠DFE=∠AFC,
∴△DEF∽△ACF,
∴
==,
设DF=5x,则AF=13x,
∴AD=
=12x,AB=AE=AF+EF=AF+DF=18x,
∴BC=12x,
∴AC=
=6
x,
∴sin∠CAB=
=
=
.
故答案为:
.