试题

题目:
青果学院如图,四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE,已知DE:AC=5:13,则sin∠CAB=
2
13
13
2
13
13

答案
2
13
13

青果学院解:∵四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,
∴∠B=∠AEC=∠ADC=90°,AB=CD=AE,∠EAC=∠BAC,
∵AB∥CD,
∴∠DCA=∠BAC,
∴∠DCA=∠EAC,
∴FA=CF,
∵AE=CD,
∴DF=EF,
EF
FC
=
DF
AF

∵∠DFE=∠AFC,
∴△DEF∽△ACF,
DF
AF
=
DE
AC
=
5
13

设DF=5x,则AF=13x,
∴AD=
AF2-DF2
=12x,AB=AE=AF+EF=AF+DF=18x,
∴BC=12x,
∴AC=
AB2+BC2
=6
13
x,
∴sin∠CAB=
BC
AC
=
12x
6
13
x
=
2
13
13

故答案为:
2
13
13
考点梳理
翻折变换(折叠问题).
根据题意易得△DEF与△ACF是等腰三角形,且相似,根据相似三角形的对应边成比例,可得DF:AF=5:13,即可设DF=5x,则AF=13x,然后利用勾股定理,即可求得AC,AB,BC的长,继而求得答案.
此题考查了相似三角形的判定与性质、折叠的性质,矩形的性质,勾股定理,等腰三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与方程思想的应用.
数形结合.
找相似题