试题
题目:
如图,将长方形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,使∠1=20度,则∠AEC′=
140°
140°
.
答案
140°
解:∵AD∥BC
∴∠DBC=∠ADB
∵∠1=∠DCB=20°
∴∠ADB=20°
∴∠DEC′=∠1+∠ADB=20°+20°=40°
∴∠AEC′=180°-∠DEC′=180°-40°=140°.
故答案是:140°.
考点梳理
考点
分析
点评
平行线的性质;翻折变换(折叠问题).
首先根据平行线的性质以及折叠的性质,即可求得∠ADB的度数,然后根据三角形的外角等于不相邻的两个内角的和即可求得∠DEC′,然后根据邻补角的定义即可求解.
本题考查了平行线的性质以及折叠的性质,关键是正确求得∠ADB的度数.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )