试题
题目:
如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,若BC=2.则CC′的长为
2
2
.
答案
2
解:根据折叠的性质知,CD=C′D,∠ADC′=∠ADC=45°,
∴∠CDC′=∠ADC+∠ADC′=90°,
∵AD是△ABC的中线,
∴CD=
1
2
BC=
1
2
×2=1,
∴C′D=CD=1,
∴在Rt△CDC′中,CC′=
CD
2
+C′D
2
=
2
.
故答案为:
2
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由根据折叠的性质知,CD=C′D,∠ADC′=∠ADC=45°,则可得∠CDC′=90°,又由AD是△ABC的中线,BC=2,即可求得CD的长,然后利用勾股定理即可求得CC′的长.
此题考查了折叠的性质、三角形中线的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系是解此题的关键,注意数形结合思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )