试题

题目:
青果学院以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),则折痕EF的长为
10
10

答案
10

青果学院解:过E作EG⊥OC,
∵点B的坐标为(9,3),
∴OA=BC=3,OC=AB=9,设OF=x,则AF=9-x,
在Rt△AOF中,AF2=OA2+OF2,即(9-x)2=32+x2,解得x=4,
∴CF=9-4=5,
同理,设B′E=x,则AE=9-x,在Rt△AEB′中,
AE2=AB′2+B′E2,即(9-x)2=32+x2,解得x=x,即BE=4,
∴GF=CF-BE=5-4=1,
在Rt△EFG中,EF2=EG2+FG2,即EF2=32+12,EF=
10

故答案为:
10
考点梳理
翻折变换(折叠问题);坐标与图形性质.
过E作EG⊥OC,根据点B的坐标可求出OA=BC=3,OC=AB=9,设OF=x,在Rt△AOF中利用勾股定理可求出OF的长,进而可求出CF的长,同理在Rt△AEB′中利用勾股定理可求出AE的长,进而可求出BE的长,由CF-BE可得出FG的长,在Rt△EFG中利用勾股定理即可求出EF的长.
本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
探究型.
找相似题