试题
题目:
如图2,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AEF的度数为
67.5°
67.5°
.
答案
67.5°
解:根据题意:以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E,
∴∠EAD=45°,
∵过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F,
∴∠EA′F=∠FAE=45°,
∴∠AFE=∠EFA′=(180°-45°)÷2=67.5°,
∴∠AEF=∠FEA′=180°-67.5°-45°=67.5°.
故答案为:67.5°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
根据翻折前后角度不发生变化,第一次折叠求出∠EAD的度数,再利用第2次翻折,得出∠AFE=∠EFA′以及度数,从而求出∠AEF的度数.
此题主要考查了翻折变换,利用翻折变换前后角不发生大小变化是解决问题的关键.
数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )