试题
题目:
如图,小明将一块边长为
2
3
的正方形纸片折叠成领带形状,其中∠D′CF=30°,B点落在CF边上的B′处,则AB′的长为
3
2
-
6
3
2
-
6
.
答案
3
2
-
6
解:作AG⊥EB′于点G,连接AB′,
由题意知,∠ECB′=∠D′CF=30°,∠EB′C=90°,B′C=BC=2
3
,
则∠AEB′=∠B′EC=60°,
B′E=B′Ccot60°=2,
解得:AE=2
3
-2,
∵AG⊥EB′,
∴AG=AEsin60°=3-
3
,
EG=AEcos60°=
3
-1,
∴B′G=B′E-EG=3-
3
,
在Rt△AGB′中,AB′=
A
G
2
+B′
G
2
=
(3
2
-
6
)
2
=3
2
-
6
.
故本题答案为:3
2
-
6
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
作AG⊥EB′于点G,把△AEB′分成两个直角三角形,由翻折的性质可知,∠ECB′=∠D′CF=30°,先在Rt△EB′C中,由锐角的三角函数的概念求得B′E,进而再求得AG,GB′,最后在Rt△AGB′中由勾股定理求得AB′的值.
此题主要考查了翻折的性质,直角三角形的性质,三角函数的概念、勾股定理等知识,得出AG,B′G的长是解题关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )