试题
题目:
如图,在平行四边形ABCD中,∠D=90°,AB=DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上的F点处,若△ABF的面积为30cm
2
,则EF的长为
2.6
2.6
cm.
答案
2.6
解:∵△ABF的面积为30cm
2
,AB=DC=5cm
∴BF=12
∴AF=13
∵EF=DE,AD=AF=13
∴CF=BC-BF=13-12=1
在Rt△EFC中
CF
2
+CE
2
=EF
2
即1
2
+(5-EF)
2
=EF
2
∴EF=2.6cm.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
利用△ABF的面积为30cm
2
,可得到BF=12,由勾股定理得,AF=13,由折叠的性质知,EF=DE,AD=AF=13,结合Rt△EFC中,CF
2
+CE
2
=EF
2
,即可解得EF的值.
本题利用了:
①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
②矩形的性质,勾股定理求解.
应用题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )