试题

题目:
青果学院如图,矩形纸片ABCD的长和宽分别为8和6,将纸片沿矩形的对角线折叠,重叠部分的面积等于
75
4
75
4

答案
75
4

解:∵△ACE由△ACB反折而成,
∴AB=AE=8,CE=BC=AD=6,∠B=∠E=90°,
在△ADF与△CEF中,
∠D=∠E
AD=CD
∠DAF=∠ECF

∴△ADF≌△CEF,
∴DF=EF,
设DF=x,则AF=8-x,
在Rt△ADF中,
∵AD2+DF2=AF2,即62+x2=(8-x)2,解得x=
7
4

∴CF=CD-DF=8-
7
4
=
25
4

∴重叠部分的面积=S△ACF=
1
2
CF·AD=
1
2
×
25
4
×6=
75
4

故答案为:
75
4
考点梳理
翻折变换(折叠问题).
先根据图形反折变换的性质得出BC=EC,再由全等三角形的判定定理得出△ADF≌△CEF,故可得出DF=EF,设DF=x,则AF=8-x,在Rt△ADF中,利用勾股定理即可求出x的值,故可得出CF的长,利用三角形的面积公式即可求出△ACF的面积.
本题考查的是图形的反折变换,熟知图形反折不变性的性质是解答此题的关键.
探究型.
找相似题