试题
题目:
如图,长方形纸片ABCD沿对角线AC折叠,设点D落在点D′处,BC交AD′于点E,AB=6cm,BC=8cm,则S
阴影
=
75
4
75
4
.
答案
75
4
解:∵△AD′C由△ADC翻折而成,
∴∠EAC=∠DAC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠EAC=∠ACB,
∴AE=CE,
设CE=x,则BE=8-x,
在Rt△ABE中,AE
2
=AB
2
+BE
2
,即x
2
=6
2
+(8-x)
2
,解得x=
25
4
,
∴S
阴影
=
1
2
CE·AB=
1
2
×
25
4
×6=
75
4
.
故答案为:
75
4
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
先根据翻折变换的性质得出∠EAC=∠DAC,再由平行线的性质得出∠DAC=∠ACB,故可得出AE=CE,设CE=x,则BE=8-x,在Rt△ABE中根据勾股定理可求出x的值,进而得出结论.
本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )