试题
题目:
(2012·成华区一模)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠得到对应的△BFE,且点C的对应点F落在AD上.若tan∠DFE=
5
12
,BC=3,则CE=
2
2
.
答案
2
解:∵四边形ABCD是矩形,
∴∠A=∠C=∠D=90°,AD=BC=3,
∴∠ABF+∠AFB=90°,
由折叠的性质,可得:∠BFE=∠C=90°,BF=BC=3,CE=EF,
∴∠AFB+∠DFE=90°,
∴∠ABF=∠DFE,
∵tan∠DFE=
5
12
,
∴sin∠ABF=
5
13
,cos∠ABF=
12
13
,
∴在Rt△ABF中,AF=BF·sin∠ABF=3×
5
13
=
15
13
,AB=BF·cos∠ABF=3×
12
13
=
36
13
,
∴DF=AD-AF=3-
15
13
=
24
13
,
∴CE=EF=
DF
cos∠DFE
=
24
13
×
13
12
=2.
故答案为:2.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由四边形ABCD是矩形,可得∠A=∠C=∠D=90°,AD=BC=3,又由折叠的性质,可得:∠BFE=∠C=90°,BF=BC=3,CE=EF,然后由同角的余角相等,可求得∠ABF=∠DFE,然后由tan∠DFE=
5
12
,BC=3,利用三角函数的性质,即可求得答案.
此题考查了折叠的性质、矩形的性质以及三角函数等知识.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与转化思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )