试题
题目:
(2003·三明)一张直角三角形的纸片,像如图所示那样折叠,使两个锐角顶点A、B重合.若∠B=30°,
AC=
3
,则折痕DE的长等于
1
1
.
答案
1
解:由折叠的性质可得,点E是等腰三角形DAB的底边上的中点.
根据等腰三角形的性质知,DE⊥AB.
∵∠B=30°,AC=
3
,
∴AB=2
3
,BE=
3
.
∴DE=BEtan30°=1.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
利用特殊角度构成特殊三角形,运用三角函数求解.
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
②等腰三角形的判定和性质,锐角三角函数的概念求解.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )