试题
题目:
长方形纸片ABCD中,AB=8cm,BC=4cm,现将纸片折叠,使点B与点D重合,GF为折痕.若FC=3cm,则GD=
5cm
5cm
.
答案
5cm
解:由折叠的性质得到GB=GD,设DG=GB=xcm,得到AG=AB-GB=(8-x)cm,
∵长方形ABCD中,AD=BC=4cm,
∴在Rt△ADG中,利用勾股定理得:AD
2
+AG
2
=DG
2
,即16+(8-x)
2
=x
2
,
整理得:16x=80,
解得:x=5,
则GD=5cm.
故答案为:5cm
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由折叠的性质得到GB=GD,设DG=GB=xcm,得到AG=AB-GB=(8-x)cm,再由AD=BC=4cm,在直角三角形ADG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出GD的长.
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,长方形的性质,熟练运用勾股定理是解本题的关键.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )