试题
题目:
(2012·上海)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为
3
-1
3
-1
.
答案
3
-1
解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AC=
BC
tan∠A
=
1
tan30°
=
3
,
∵将△ADB沿直线BD翻折后,将点A落在点E处,
∴∠ADB=∠EDB,DE=AD,
∵AD⊥ED,
∴∠CDE=∠ADE=90°,
∴∠EDB=∠ADB=
360°-90°
2
=135°,
∴∠CDB=∠EDB-∠CDE=135°-90°=45°,
∵∠C=90°,
∴∠CBD=∠CDB=45°,
∴CD=BC=1,
∴DE=AD=AC-CD=
3
-1.
故答案为:
3
-1.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由在Rt△ABC中,∠C=90°,∠A=30°,BC=1,利用三角函数,即可求得AC的长,又由△ADB沿直线BD翻折后,将点A落在点E处,AD⊥ED,根据折叠的性质与垂直的定义,即可求得∠EDB与∠CDB的度数,继而可得△BCD是等腰直角三角形,求得CD的长,继而可求得答案.
此题考查了折叠的性质、直角三角形的性质以及等腰直角三角形性质.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )