试题

题目:
青果学院(2012·绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为
3
3

答案
3

解:连接CC′,
∵将△ABE沿AE折叠,使点B落在AC上的点B′处,
又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.
∴EC=EC′,
∴∠1=∠2,
∵∠3=∠2,
∴∠1=∠3,
∵∠CB′C′=∠D=90°,
∴△CC′B′≌△CC′D,青果学院
∴CB′=CD,
又∵AB′=AB,
所以B′是对角线AC中点,
即AC=2AB,
所以∠ACB=30°,
∴∠BAC=60°,
∴tan∠BAC=tan60°=
BC
AB
=
3

BC:AB的值为:
3

故答案为:
3
考点梳理
翻折变换(折叠问题).
首先连接CC',可以得到CC′是角EC'D的平分线,所以CB′=CD 又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.
此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC'D的平分线是解题关键.
压轴题.
找相似题