试题
题目:
(2012·岳阳)如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD=
3
2
3
2
.
答案
3
2
解:如图,点B′是沿AD折叠,点B的对应点,连接B′D,
∴∠AB′D=∠B=90°,AB′=AB=3,
∵在Rt△ABC中,∠B=90°,AB=3,BC=4,
∴AC=
AB
2
+BC
2
=5,
∴B′C=AC-AB′=5-3=2,
设BD=B′D=x,则CD=BC-BD=4-x,
在Rt△CDB′中,CD
2
=B′C
2
+B′D
2
,
即:(4-x)
2
=x
2
+4,
解得:x=
3
2
,
∴BD=
3
2
.
故答案为:
3
2
.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由题意可得∠AB′D=∠B=90°,AB′=AB=3,由勾股定理即可求得AC的长,则可得B′C的长,然后设BD=B′D=x,则CD=BC-BD=4-x,由勾股定理CD
2
=B′C
2
+B′D
2
,即可得方程,解方程即可求得答案.
此题考查了折叠的性质与勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠中的对应关系.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )