试题
题目:
如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.
答案
解:由题意得DB=AD;
设CD=xcm,则
AD=DB=(8-x)cm,
∵∠C=90°,∴在Rt△ACD中,
根据勾股定理得:AD
2
-CD
2
=AC
2
,即(8-x)
2
-x
2
=36,
解得x=
7
4
;
即CD=
7
4
cm.
解:由题意得DB=AD;
设CD=xcm,则
AD=DB=(8-x)cm,
∵∠C=90°,∴在Rt△ACD中,
根据勾股定理得:AD
2
-CD
2
=AC
2
,即(8-x)
2
-x
2
=36,
解得x=
7
4
;
即CD=
7
4
cm.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由翻折易得DB=AD,利用直角三角形ACD,勾股定理即可求得CD长.
翻折前后对应边相等,利用勾股定理求解即可.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )