试题
题目:
如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )
A.10cm
B.12cm
C.15cm
D.20cm
答案
C
解:∵△ADE由△BDE反折而成,AC=5cm,BC=10cm,
∴AD=BD,
∴△ACD的周长=AC+CD+AD=AC+BC=15cm.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
根据图形反折变换的性质得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论.
本题考查的是翻折变换,熟知图形反折不变性的性质是解答此题的关键.
探究型.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )