试题
题目:
如图所示,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=50°,求∠1,∠2的度数.
答案
解:∵AD∥BC,
∴∠DEF=∠EFG,
∵∠EFG=50°,
∴∠DEF=50°;
又∵∠DEF=∠D′EF,
∴∠D′EF=50°;
∴∠1=180°-50°-50°=80°;
又∵AD∥BC,
∴∠1+∠2=180°,
即∠2=180°-∠1=180°-80°=100°.
解:∵AD∥BC,
∴∠DEF=∠EFG,
∵∠EFG=50°,
∴∠DEF=50°;
又∵∠DEF=∠D′EF,
∴∠D′EF=50°;
∴∠1=180°-50°-50°=80°;
又∵AD∥BC,
∴∠1+∠2=180°,
即∠2=180°-∠1=180°-80°=100°.
考点梳理
考点
分析
点评
专题
平行线的性质;翻折变换(折叠问题).
由折叠可知,∠DEF=∠D′EF,再根据两直线平行,同旁内角互补及内错角相等求解.
考查了翻折变换(折叠问题)和平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )