答案
解:(1)∵四边形ABCD是矩形,
∴∠B=90°,
∵AB=5cm,△ABF的面积是30cm
2,
∴S
△ABF=
AB·BF=
×5×BF=30,
∴BF=12(cm);
(2)在Rt△ABF中,AF=
=13(cm),
根据折叠的性质可得:AD=AF=13cm,∠AFE=∠D=90°,
∵四边形ABCD是矩形,
∴∠B=∠C=90°,BC=AD=13cm,
∴∠BAF+∠BFA=90°,∠BFA+∠CFE=90°,CF=BC-BF=13-12=1(cm),

∴∠BAF=∠CFE,
∴△BAF∽△CFE,
∴
=,
即
=,
∴CE=
(cm);
(3)过点F作FH⊥AE于H,
∵CE=
cm,CF=1cm,
∴EF=
=
(cm),DE=CD-CE=5-
=
,
∴AE=
=
(cm),
∴FH=
=
=
(cm).
即点F到直线AE的距离为
cm.
解:(1)∵四边形ABCD是矩形,
∴∠B=90°,
∵AB=5cm,△ABF的面积是30cm
2,
∴S
△ABF=
AB·BF=
×5×BF=30,
∴BF=12(cm);
(2)在Rt△ABF中,AF=
=13(cm),
根据折叠的性质可得:AD=AF=13cm,∠AFE=∠D=90°,
∵四边形ABCD是矩形,
∴∠B=∠C=90°,BC=AD=13cm,
∴∠BAF+∠BFA=90°,∠BFA+∠CFE=90°,CF=BC-BF=13-12=1(cm),

∴∠BAF=∠CFE,
∴△BAF∽△CFE,
∴
=,
即
=,
∴CE=
(cm);
(3)过点F作FH⊥AE于H,
∵CE=
cm,CF=1cm,
∴EF=
=
(cm),DE=CD-CE=5-
=
,
∴AE=
=
(cm),
∴FH=
=
=
(cm).
即点F到直线AE的距离为
cm.