试题
题目:
如图,点E在正方形ABCD的边BC上,将△ABE沿直线AE折叠,使点B落在正方形内点P处,延长EP交CD于点F,连接AF.若点E在BC上移动,则下列结论正确的是( )
A.△AEF的周长不变
B.△AEF的面积不变
C.△CEF的周长不变
D.△CEF的面积不变
答案
C
解:∵四边形ABCD是正方形,
∴∠B=∠D=90°,AB=AD,
由折叠的性质可得:BE=PE,∠APE=∠B=90°,AP=AB,
∴∠APF=90°,AP=AD,
在Rt△APF和Rt△ADF中,
AP=AD
AF=AF
,
∴Rt△APF≌Rt△ADF(HL),
∴PF=DF,
∴△CEF的周长为:CE+EF+CF=CE+PE+PF+CF=CE+BE+DF+CF=BC+CD.
∴△CEF的周长不变.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由四边形ABCD是正方形,将△ABE沿直线AE折叠,使点B落在正方形内点P处,可得BE=PE,易证得Rt△APF≌Rt△ADF,则可得DF=PF,继而可求得△CEF的周长等于BC+CD,则可得△CEF的周长不变.
此题考查了折叠的性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )