试题

题目:
青果学院(2012·抚顺一模)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为(  )



答案
B
青果学院解:连BH,如图,
∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,
∴∠1=∠2,EB=EH,BH⊥EG,
而∠1>60°,
∴∠1≠∠AEH,
∵EB=EH,
∴∠EBH=∠EHB,
又∵点E是AB的中点,
∴EH=EB=EA,
∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4.
故选B.
考点梳理
翻折变换(折叠问题).
连BH,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余角相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.
本题考查了折叠的性质:折叠前后的两个图形全等,即对应角相等,对应线段相等.也考查了若三角形一边上的中线等于这边的一半,则此三角形为直角三角形.
找相似题