试题
题目:
如图,ABCD为矩形,E为BC中点,以AE为折痕,折叠△ABE,B落在B
1
,连B
1
B和B
1
C,判断△B
1
BC形状.
答案
解:∵△AB
1
E是由△ABE翻折得到的,
∴BE=B
1
E,
∴∠EBB
1
=∠EB
1
B,
∵E为BC中点,
∴BE=EC,
∴B
1
E=EC,
∴∠EB
1
C=∠ECB
1
,
在△BB
1
C中,
∴∠EBB
1
+∠EB
1
B+∠EB
1
C+∠ECB
1
=180°,
∴∠BB
1
E+∠CB
1
E=90°,
∴△B
1
BC是直角三角形.
解:∵△AB
1
E是由△ABE翻折得到的,
∴BE=B
1
E,
∴∠EBB
1
=∠EB
1
B,
∵E为BC中点,
∴BE=EC,
∴B
1
E=EC,
∴∠EB
1
C=∠ECB
1
,
在△BB
1
C中,
∴∠EBB
1
+∠EB
1
B+∠EB
1
C+∠ECB
1
=180°,
∴∠BB
1
E+∠CB
1
E=90°,
∴△B
1
BC是直角三角形.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
易得BE=B
1
E,可得到所对的2个角相等,根据E为BC中点,可得B
1
E=EC,也可得到2个角相等,4个角相加为180°可得∠BB
1
C为90°,那么可得所求三角形的形状.
考查翻折问题;用到的知识点为:翻折前后的对应线段相等;等边对等角.
数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )