答案
解:如图,在矩形ABCO中,OC=AB=9,CB=OA=15.
∵根据折叠的性质得到CB′=CB=15,
∴在直角△B′OC中,由勾股定理得到:OB′=
=
=12,
如图所示,点B′在x轴的正半轴上,则B′(12,0);
设AE=x(x>0),则BE=B′E=9-x,则在直角△AEB′中,利用勾股定理得到:(9-x)
2=x
2+3
2,
解得,x=4.5,
则E(15,4.5).
综上所述,点B′、E的坐标分别为(12,0),(15,4.5).
解:如图,在矩形ABCO中,OC=AB=9,CB=OA=15.
∵根据折叠的性质得到CB′=CB=15,
∴在直角△B′OC中,由勾股定理得到:OB′=
=
=12,
如图所示,点B′在x轴的正半轴上,则B′(12,0);
设AE=x(x>0),则BE=B′E=9-x,则在直角△AEB′中,利用勾股定理得到:(9-x)
2=x
2+3
2,
解得,x=4.5,
则E(15,4.5).
综上所述,点B′、E的坐标分别为(12,0),(15,4.5).