试题
题目:
(2012·荆州模拟)如图,Rt△ABC的两直角边长分别是3,4,直线DE分别交直角边AC,BC于D,E,将△CDE沿DE折叠,点C落在点C′处,且点C′在△ABC外部,则阴影部分的图形的周长是( )
A.8
B.9
C.l2
D.l4
答案
C
解:在Rt△ABC中,AC=4cm,BC=3cm;
由勾股定理得:AB=
AB
2
+BC
2
=5cm;
故阴影部分的周长=DF+EF+AB=AB+AC+BC=3+4+5=12cm.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
在Rt△ABC中,根据勾股定理可求出斜边AB的长;由图知阴影部分的周长为AB、DC'、EC'的长度和,根据折叠的性质知CD=DF,EC'=CE,那么阴影部分的周长等于三角形ABC的周长,由此得解.
此题考查了折叠的性质,能够根据折叠的性质发现阴影部分的周长和三角形ABC周长之间的关系是解答此题的关键.
数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )