试题
题目:
(2012·路南区一模)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中一定正确的是( )
A.△FEC是等边三角形
B.FE是△ABC的中位线
C.四边形ADFE是菱形
D.∠BDF+∠CEF=2∠A
答案
D
解:∵DE∥BC,
∴∠AED=∠C,∠DEF=∠CFE,
由折叠的性质可得:∠AED=∠DEF,AE=EF,
∴∠C=∠EFC,
∴EF=EC,
∴△FEC是等腰三角形,故A错误;
同理可证,△BDF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
但FE不一定是△ABC的中位线;
故B错误;
∵AD=DF,AE=EF,
∴不能证得四边形ADFE是菱形,
故C错误;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故D正确.
故选D.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由DE∥BC与折叠的性质,易证得△FEC是等腰三角形,同理可证,△BDF是等腰三角形,继而可证得DE是△ABC的中位线,由三角形的内角和定理,可求得∠BDF+∠CEF=2∠A,注意排除法在解选择题中的应用.
此题考查了折叠的性质、等腰三角形的判定与性质、三角形中位线的性质以及三角形内角和定理.此题难度适中,注意掌握折叠中的对应关系,注意数形结合思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )