试题
题目:
(2012·南岗区二模)如图,在Rt△ABC中.∠C=90°,BC=6,AC=8,点D在AC上,将△BCD沿BD折叠,使点C恰好落在AB边的点C′处,则△ADC′的面积是( )
A.5
B.6
C.7
D.8
答案
B
解:∵∠C=90°,BC=6,AC=8,
∴AB=
A
C
2
+B
C
2
=10,
∵△BCD沿BD折叠,使点C恰好落在AB边的点C′处,
∴∠BC′D=∠C=90°,BC′=BC=6,DC′=DC,
∴AC′=AB-BC′=10-6=4,
∵S
△ADB
+S
△DBC
=S
△ABC
,
∴
1
2
·AB·DC′+
1
2
BC·DC=
1
2
AC·BC,
∴10DC′+6DC′=6×8,
∴DC′=3,
∴S△ADC′=
1
2
DC′·AC′=
1
2
×4×3=6.
故选B.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
先根据勾股定理计算出AB=10,由于△BCD沿BD折叠,使点C恰好落在AB边的点C′处,根据折叠的性质得到∠BC′D=∠C=90°,BC′=BC=6,DC′=DC,可计算出AC′=AB-BC′=10-6=4,再利用
S
△ADB
+S
△DBC
=S
△ABC
可求出DC′的长,然后根据三角形面积公式即可计算出△ADC′的面积.
本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了勾股定理以及三角形的面积公式.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )