试题
题目:
(2013·黔东南州一模)将矩形ABCD沿AE折叠,使点D落在D′处,已知∠CED′=60°,DE=1,则DD′的长为( )
A.
3
2
B.
3
C.2
2
D.3
答案
B
解:∵将矩形ABCD沿AE折叠,使点D落在D′处,已知∠CED′=60°,
∴∠1=∠2,∠DEA=∠D′EA,∠DED′=180°-60°=120°,
∴∠DEA=∠D′EA=60°,
∴∠1=∠2=30°,
∵DE=1,
∴AD=DE÷tan30°=
3
,
∵AD=AD′,∠DAD′=30°+30°=60°,
∴△ADD′是等边三角形,
∴DD′=AD=AD′=
3
,
故选:B.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
首先根据翻折变换的性质得出∠1=∠2,∠DEA=∠D′EA,利用∠CED′=60°得出∠1=∠2=30°,再利用三角函数关系求出AD的长,再利用等边三角形的判定得出DD′的长.
此题主要考查了翻折变换的性质以及等边三角形的判定等知识,根据已知得出△ADD′是等边三角形是解题关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )