试题

题目:
青果学院(2013·沙湾区模拟)如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为(  )



答案
D
解:∵△A′DE△ADE翻折而成,
∴AE=A′E,
∵A′为CE的中点,
∴AE=A′E=
1
2
CE,
∴AE=
1
3
AC,
AE
AC
=
1
3

∵∠C=90°,DE⊥AC,
∴DE∥BC,
∴△ADE∽△ABC,
DE
BC
=
AE
BC
=
1
3
DE
3
=
1
3

解得DE=1.
故选D.
考点梳理
翻折变换(折叠问题).
先由图形翻折变换的性质得出AE=A′E,再根据A′为CE的中点可知AE=A′E=
1
2
CE,故AE=
1
3
AC,
AE
AC
=
1
3
,再由∠C=90°,DE⊥AC可知DE∥BC,故可得出△ADE∽△ABC,由相似三角形的性质可知
DE
BC
=
AE
BC
=
1
3
,故可得出结论.
本题考查的是图形的翻折变换及相似三角形的判定与性质,熟知图形翻折不变性的性质是解答此题的关键.
探究型.
找相似题