试题
题目:
(2005·荆门)有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AC与BC交于点F(如下图),则CF的长为( )
A.0.5
B.0.75
C.1
D.1.25
答案
C
解:∵AB=2.5,AD=1.5
∴AD=DE=1.5,BD=AB-AD=1,A′B=0.5
∵BF∥DE
∴A′B:A′D=BF:DE
∴BF=0.5
∴CF=BC-BF=1.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
由折叠的性质可知AD=DE=1.5,BD=AB-AD=1,A′B=0.5,根据矩形的性质可知BF∥DE,利用成比例线段A′B:A′D=BF:DE可求得BF=0.5,从而求出CF=BC-BF=1.
本题利用了:
(1)折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;
(2)正方形的性质,平行线的性质求解.
应用题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )