试题
题目:
(2012·河池)如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则
MN
BM
的值为( )
A.2
B.4
C.
2
5
D.
2
6
答案
D
解:过点N作NG⊥BC于G,
∵四边形ABCD是矩形,
∴四边形CDNG是矩形,AD∥BC,
∴CD=NG,CG=DN,∠ANM=∠CMN,
由折叠的性质可得:AM=CM,∠AMN=∠CMN,
∴∠ANM=∠AMN,
∴AM=AN,
∴四边形AMCN是平行四边形,
∵AM=CM,
∴四边形AMCN是菱形,
∵△CDN的面积与△CMN的面积比为1:4,
∴DN:CM=1:4,
设DN=x,
则AN=AM=CM=CN=4x,AD=BC=5x,CG=x,
∴BM=x,GM=3x,
在Rt△CGN中,NG=
CN
2
-CG
2
=
15
x,
在Rt△MNG中,MN=
GM
2
+NG
2
=2
6
x,
∴
MN
BM
=2
6
.
故选D.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
首先过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,继而求得答案.
此题考查了折叠的性质、矩形的判定与性质、菱形的判定与性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合与方程思想的应用.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )