试题
题目:
如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试探索BE、EF、FC的大小关系;并说明理由.
答案
解:结论:BE=EF=FC(1分)
理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°(2分),
∵OC,OB平分∠ACB,∠ABC,
∴∠OBE=∠OCF=30°(3分),
∵EG,HF垂直平分OB,OC,
∴OE=BE,OF=FC(5分),
∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°,
∴∠OEF=∠OFE=60°,
∴三角形OEF是等边三角形(8分),
∴OF=OE=EF,
∴BE=EF=FC(10分).
解:结论:BE=EF=FC(1分)
理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°(2分),
∵OC,OB平分∠ACB,∠ABC,
∴∠OBE=∠OCF=30°(3分),
∵EG,HF垂直平分OB,OC,
∴OE=BE,OF=FC(5分),
∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°,
∴∠OEF=∠OFE=60°,
∴三角形OEF是等边三角形(8分),
∴OF=OE=EF,
∴BE=EF=FC(10分).
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;等边三角形的判定与性质.
根据角平分线的定义可得出∠OBE=∠OCF=30°,再根据OB和OC的垂直平分线交BC于E、F,得出∠OEF=∠OFE=60°,则三角形OEF为等边三角形,测得出BE=EF=FC.
本题考查了线段垂直平分线的性质、角平分线的定义以及等边三角形的判定和性质,是基础知识要熟练掌握.
计算题;证明题.
找相似题
(2013·湖北)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )
如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( )