答案
解:(1)△COD是等边三角形.
理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)∵AD
2+OD
2=(n
2-1)
2+(2n)
2=n
4-2n
2+1+4n
2=n
4+2n
2+1
=(n
2+1)
2=AO
2,
∴△AOD是直角三角形,且∠ADO=90°,
∵△COD是等边三角形,
∴∠CDO=60°,
∴∠ADC=∠ADO+∠CDO=90°+60°=150°,
根据旋转的性质,α=∠ADC=150;
(3)∵α=∠ADC,∠CDO=60°,
∴∠ADO=α-60°,
又∵∠AOD=360°-110°-α-60°=190°-α,
∴∠DAO=180°-(190°-α)-(α-60°)=180°-190°+α-α+60°=50°,
∵△AOD是等腰三角形,
∴①∠AOD=∠ADO时,190°-α=α-60°,
解得α=125°,
②∠AOD=∠DAO时,190°-α=50°,
解得α=140°,
③∠ADO=∠DAO时,α-60°=50°,
解得α=110°,
综上所述,α为125°或140°或110°时,△AOD是等腰三角形.
解:(1)△COD是等边三角形.
理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等边三角形;
(2)∵AD
2+OD
2=(n
2-1)
2+(2n)
2=n
4-2n
2+1+4n
2=n
4+2n
2+1
=(n
2+1)
2=AO
2,
∴△AOD是直角三角形,且∠ADO=90°,
∵△COD是等边三角形,
∴∠CDO=60°,
∴∠ADC=∠ADO+∠CDO=90°+60°=150°,
根据旋转的性质,α=∠ADC=150;
(3)∵α=∠ADC,∠CDO=60°,
∴∠ADO=α-60°,
又∵∠AOD=360°-110°-α-60°=190°-α,
∴∠DAO=180°-(190°-α)-(α-60°)=180°-190°+α-α+60°=50°,
∵△AOD是等腰三角形,
∴①∠AOD=∠ADO时,190°-α=α-60°,
解得α=125°,
②∠AOD=∠DAO时,190°-α=50°,
解得α=140°,
③∠ADO=∠DAO时,α-60°=50°,
解得α=110°,
综上所述,α为125°或140°或110°时,△AOD是等腰三角形.