试题
题目:
如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=
90°
90°
.
答案
90°
解:∵BM=MN=NC=AM=AN,
∴△AMN是等边三角形,∠B=∠BAM,
∴∠MAN=∠AMN=60°.
∵∠B+∠BAM=∠AMN,
∴∠B+∠BAM=60°,
∴∠BAM=30°,
∴∠BAN=30°+60°=90°.
故答案为:90°.
考点梳理
考点
分析
点评
等边三角形的判定与性质.
由条件可以得出△AMN是等边三角形,就可以得出∠MAN=∠AMN=60°,由AM=BN就可以得出∠B=∠BAM,根据三角形的外角于内角的关系可以得出∠BAM=30°,从而可以求出∠BAN的度数.
本题考查了等边三角形的判定及性质的运用,等腰三角形的性质的运用,三角形的外角于内角的关系的运用,解答时得出△AMN是等边三角形是关键.
找相似题
(2013·湖北)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )
如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为( )
在四边形ABCD中,∠DAB=∠CBA,∠CDA=90°,∠BCD=78°,AB=2AD,则∠CAD的度数为( )
如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( )