试题
题目:
如图,OP平分∠MON,点C为OP上的任意一点,CA⊥ON,垂足为A,线段OA的垂直平分线BG交OM于点B,交OA于点G,已知AB=6,AC=3,则△OBC的面积为
9
9
.
答案
9
解:如图,过点C作CD⊥OM于D,
∵OP平分∠MON,CA⊥ON,垂足为A,
∴CD=AC=3,
∵BG是线段AB的垂直平分线,
∴OB=AB=6,
∴△OBC的面积=
1
2
OB·CD=
1
2
×6×3=9.
故答案为:9.
考点梳理
考点
分析
点评
角平分线的性质;线段垂直平分线的性质.
过点C作CD⊥OM于D,根据角平分线上的点到角的两边的距离相等可得CD=AC,线段垂直平分线上的点到线段两端点的距离相等可得OB=AB,然后根据三角形的面积公式列式进行计算即可得解.
本题考查了角平分线上的点到角的两边的距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并分别求出OB、CD的长是解题的关键.
找相似题
(2008·娄底)如图,Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点D,交BC于点E,AE平分∠BAC,那么下列关系式中不成立的是( )
(2007·宿迁)如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于( )
已知如图,AC是线段BD的垂直平分线,则图中全等三角形的对数是( )
如图,在△ABC中,AC=10,DE垂直平分AB,△BDC的周长为17,则BC等于( )
在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )