答案
解:连接AO并延长,交BC于点D,
∵0E,OF分别是AB,AC的中垂线,
∴OB=OA,OC=OA,
∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,
∵∠ABC=45°,
∴∠CBO=∠BCO=25°,
∴∠BOC=180°-∠CBO-∠BCO=130°,
∵∠BOD=∠ABO+∠BAO,
∴∠BOD=40°,∠COD=90°.
∵∠COD=∠CAO+∠ACO,
∴∠CAO=45°,
∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°.
解:连接AO并延长,交BC于点D,
∵0E,OF分别是AB,AC的中垂线,
∴OB=OA,OC=OA,
∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,
∵∠ABC=45°,
∴∠CBO=∠BCO=25°,
∴∠BOC=180°-∠CBO-∠BCO=130°,
∵∠BOD=∠ABO+∠BAO,
∴∠BOD=40°,∠COD=90°.
∵∠COD=∠CAO+∠ACO,
∴∠CAO=45°,
∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°.