试题
题目:
(2011·三门峡二模)在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC( )
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三边垂直平分线的交点
答案
D
解:∵PA=PB∴P在AB的垂直平分线上,
同理P在AC,BC的垂直平分线上.
∴点P是△ABC三边垂直平分线的交点.
故选D
考点梳理
考点
分析
点评
线段垂直平分线的性质.
利用线段的垂直平分线的性质进行思考,首先思考满足PA=PB的点的位置,然后思考满足PB=PC的点的位置,答案可得.
本题考查的知识点为:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.注意做题时要分别进行思考.
找相似题
(2008·娄底)如图,Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点D,交BC于点E,AE平分∠BAC,那么下列关系式中不成立的是( )
(2007·宿迁)如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于( )
已知如图,AC是线段BD的垂直平分线,则图中全等三角形的对数是( )
如图,在△ABC中,AC=10,DE垂直平分AB,△BDC的周长为17,则BC等于( )
在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( )