试题
题目:
如图,已知Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试说明∠ACE=90°.
答案
证明:∵Rt△ABC≌Rt△CDE,
∴∠BCA=∠CED,
∵△DCE是直角三角形,
∴∠CED+∠ECD=90°,
∴∠BCA+∠ECD=90°,
∴∠ACE=180°-90°=90°.
证明:∵Rt△ABC≌Rt△CDE,
∴∠BCA=∠CED,
∵△DCE是直角三角形,
∴∠CED+∠ECD=90°,
∴∠BCA+∠ECD=90°,
∴∠ACE=180°-90°=90°.
考点梳理
考点
分析
点评
全等三角形的性质.
根据Rt△ABC≌Rt△CDE可得∠BCA=∠CED,再根据直角三角形两锐角互余可得∠CED+∠ECD=90°,进而得到∠BCA+∠ECD=90°,再根据角之间的关系可得∠ACE=90°.
此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等,直角三角形两锐角互余.
找相似题
(2010·鞍山)如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在( )
(2011·桐乡市二模)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是( )
如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是( )
如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于( )
如图,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为( )