试题
题目:
(2010·鞍山)如图,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2010m停下,则这个微型机器人停在( )
A.点A处
B.点B处
C.点C处
D.点E处
答案
A
解:∵两个全等的等边三角形的边长为1m,
∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,
∵2010÷6=335,即正好行走了335圈,回到出发点,
∴行走2010m停下,则这个微型机器人停在A点.
故选A.
考点梳理
考点
分析
点评
专题
全等三角形的性质.
根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2010÷6=335,正好行走了335圈,即落到A点.
本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2010为6的倍数.
规律型.
找相似题
(2011·桐乡市二模)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是( )
如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是( )
如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于( )
如图,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为( )
如图,△ABC≌△EFD,那么下列说法错误的是( )