试题
题目:
△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为( )
A.2cm,2cm,2cm
B.3cm,3cm,3cm
C.4cm,4cm,4cm
D.2cm,3cm,5cm
答案
A
解:连接OA,OB,OC,则△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,
∴BD=BF,CD=CE,AE=AF,
又∵∠C=90,OD⊥BC于D,OE⊥AC于E,且O为△ABC三条角平分线的交点
∴四边形OECD是正方形,
则点O到三边AB、AC、BC的距离=CD,
∴AB=8-CD+6-CD=-2CD+14,又根据勾股定理可得:AB=10,
即-2CD+14=10
∴CD=2,
即点O到三边AB、AC、BC的距离为2cm.
故选A
考点梳理
考点
分析
点评
正方形的判定与性质.
连接OA,OB,OC,利用角的平分线上的点到角的两边的距离相等可知△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,
∴BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,∴AB=8-CD+6-CD=10,解得CD=2,所以点O到三边AB、AC、BC的距离为2.
本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系.
找相似题
如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)( )
如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为
9
9
.
在Rt△ABC中,AB=3,BC=4,∠B=9O°,AD、BE、CF是△ABC的三条内角平分线.那么,△DEF的面积等于
10
7
10
7
.
(2013·长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.
应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为
152
152
.
(2007·北京)在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于
2
的直角三角形纸片的直角顶点放在对角线FO上.
(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为
1
2
1
2
;
(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.