试题

题目:
(2011·江西)一组数据:2,3,4,x中,若中位数与平均数相等,则数x不可能是(  )



答案
B
解:(1)将这组数据从小到大的顺序排列为2,3,x,4,
处于中间位置的数是3,x,
那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
平均数为(2+3+4+x)÷4,
∴(3+x)÷2=(2+3+4+x)÷4,
解得x=3,大小位置与3对调,不影响结果,符合题意;

(2)将这组数据从小到大的顺序排列后2,3,4,x,
中位数是(3+4)÷2=3.5,
此时平均数是(2+3+4+x)÷4=3.5,
解得x=5,符合排列顺序;

(3)将这组数据从小到大的顺序排列后x,2,3,4,
中位数是(2+3)÷2=2.5,
平均数(2+3+4+x)÷4=2.5,
解得x=1,符合排列顺序.
∴x的值为1、3或5.
故选B.
考点梳理
中位数;算术平均数.
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
本题结合平均数考查了确定一组数据的中位数的能力.涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数
计算题;压轴题.
找相似题