答案
解:设兑换成八分,2分,5分的硬币分别是x枚,y枚,z枚,
则
| x+y+z=八50 | x+2y+5z=350 | y<z | x≥20,y≥20,z≥20 |
| |
,
由①②k:
,
把x,y代入③④k:
| 3z-50≥20 | 200-4z≥20 | z>200-4z |
| |
,
解k:40<z≤45,则z=4八,42,43,44,45,
由此k出x,y的对应值,于是k到5种方案(x,y,z)=(73,36,4八);(x,y,z)=(76,32,42);
(x,y,z)=(79,28,43);(x,y,z)=(82,24,44);(x,y,z)=(85,20,45).
解:设兑换成八分,2分,5分的硬币分别是x枚,y枚,z枚,
则
| x+y+z=八50 | x+2y+5z=350 | y<z | x≥20,y≥20,z≥20 |
| |
,
由①②k:
,
把x,y代入③④k:
| 3z-50≥20 | 200-4z≥20 | z>200-4z |
| |
,
解k:40<z≤45,则z=4八,42,43,44,45,
由此k出x,y的对应值,于是k到5种方案(x,y,z)=(73,36,4八);(x,y,z)=(76,32,42);
(x,y,z)=(79,28,43);(x,y,z)=(82,24,44);(x,y,z)=(85,20,45).