题目:
(2007·东城区二模)阅读理解下列例题:
例题:解一元二次不等式x
2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x
2-2x-3分解因式,得:x
2-2x-3=(x-1)
2-4=(x-3)(x+1),又x
2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得
①或
②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x
2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax
2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时) |
30 |
50 |
70 |
… |
刹车距离S(米) |
6 |
15 |
28 |
… |
问该车是否超速行驶?
答案
解:(1)把二次三项式x
2+4x-12分解因式,得:
x
2+4x-12=(x+2)
2-16=(x+6)(x-2),
又∵x
2+4x-12>0,
∴(x+6)(x-2)>0.>10
由“两实数相乘,同号得正,异号得负”,得
①或
②
由①x>2,得不等式组无解;
由②得x<-6.
∴(x+6)(x-2)>0的解集是x<-6或x>2.
∴原不等式的解集是x<-6或x>2.
(2)根据题意有
,
解得
,
故刹车距离S(米)与车速x(千米/时)的函数关系S=0.005x
2+0.05x,
事故后现场测得此车的刹车距离略超过10米,
则0.005x
2+0.05x>10,
(x-40)(x+50)>0,
解得x<-50(不符合题意,舍去)或x>40.
故该车超速行驶.
解:(1)把二次三项式x
2+4x-12分解因式,得:
x
2+4x-12=(x+2)
2-16=(x+6)(x-2),
又∵x
2+4x-12>0,
∴(x+6)(x-2)>0.>10
由“两实数相乘,同号得正,异号得负”,得
①或
②
由①x>2,得不等式组无解;
由②得x<-6.
∴(x+6)(x-2)>0的解集是x<-6或x>2.
∴原不等式的解集是x<-6或x>2.
(2)根据题意有
,
解得
,
故刹车距离S(米)与车速x(千米/时)的函数关系S=0.005x
2+0.05x,
事故后现场测得此车的刹车距离略超过10米,
则0.005x
2+0.05x>10,
(x-40)(x+50)>0,
解得x<-50(不符合题意,舍去)或x>40.
故该车超速行驶.