试题
题目:
有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩55个;如果每一个猴子分5个,都能分得桃子,但剩下一个猴子分得的桃子不够4个,你能求出有几只猴子,几个桃子吗?
答案
解:设有x只猴子,则有(3x+55)个桃子,根据题意得:
0<(3x+55)-5(x-1)<4,
解得28<x<30,
∵x为正整数,
∴x=29,
当x=29时,3x+55=142(个).
答:有29只猴子,142个桃子.
解:设有x只猴子,则有(3x+55)个桃子,根据题意得:
0<(3x+55)-5(x-1)<4,
解得28<x<30,
∵x为正整数,
∴x=29,
当x=29时,3x+55=142(个).
答:有29只猴子,142个桃子.
考点梳理
考点
分析
点评
一元一次不等式组的应用.
设有x只猴子,则有(3x+55)个桃子,根据桃子所剩的数量作为不等关系可列不等式:0<(3x+55)-5(x-1)<4,解之可得解集,取整数解即可.
此题主要考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
找相似题
(2013·吴江市模拟)某校学生志愿服务小组在“学雷锋”活动中购买了1批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后1位儿童分不到5盒,但至少能有2盒.则这e儿童福利院的儿童最少有( )
(2012·泰州模拟)100人中有54人爱音乐,78人爱体育,则既爱音乐又爱体育的人数n的范围是( )
(2009·裕华区二模)现定义运算a·b,当a>b时,有a·b=b,若(x+2)·2x=2x,那么x的取值范围是( )
课外阅读课上,老师将43本书分给各个小组,每组8本,还有剩余;每组9本,却又不够.这个课外阅读小组共有( )
把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( )