试题

题目:
从小明家到学校的路程是2400米,如果小明早5我点离家,要在我点少0分到40分之间到达学校,设步行速度为x米/分,则可列不等式组为
少0x≤2400
40x≥2400
少0x≤2400
40x≥2400
,小明步行的速度范围是
口0米/分-80米/分
口0米/分-80米/分

答案
少0x≤2400
40x≥2400

口0米/分-80米/分

解:(p)设步行速度为x米/分,依题意可口:
30x≤p下00
下0x≥p下00


(p)解(p)的不等式组可口:60≤x≤80
所以小明的步行范围是60米/分-80米/分.
故答案为:
30x≤p下00
下0x≥p下00
;60米/分-80米/分.
考点梳理
一元一次不等式组的应用.
(1)设步行速度为x米/分,根据“早上7点离家,要在7点30分到40分之间到达学校”说明在30分内所行的路程小于等于2400米,40分内所行的路程大于等于2400米;
(2)根据所列出的不等式组可求出小明步行的速度范围.
解决问题的关键是读懂题意,关键是理解要在7点30分到40分之间到达学校,找到所求的量的等量关系.
计算题.
找相似题