试题
题目:
如图,△ABC中,CE平分∠ACB交AB于E,过E作EF∥BC交∠ACD的平分线于F、EF交AC于M,若CM=5,则CE
2
+CF
2
=
100
100
.
答案
100
解:∵CE平分∠ACB交AB于E,CF平分∠ACD,
∴∠1=∠2=
1
2
∠ACB,∠3=∠4=
1
2
∠ACD,
∴∠2+∠3=
1
2
(∠ACB+∠ACD)=90°,
∴△CEF是直角三角形,
∵EF∥BC,
∴∠1=∠5,∠4=∠F,
∴∠2=∠5,∠3=∠F,
∴EM=CM,CM=MF,
∵CM=5,
∴EF=5+5=10,
在Rt△CEF中,CE
2
+CF
2
=EF
2
=10
2
=100.
故答案为:100.
考点梳理
考点
分析
点评
专题
直角三角形的性质;角平分线的定义;平行线的性质;勾股定理.
根据角平分线的定义可以证明出△CEF是直角三角形,再根据平行线的性质以及角平分线的定义证明得到EM=CM=MF然后求出EF的长度,然后利用勾股定理列式计算即可求解.
本题考查了直角三角形的性质,平行线的性质,以及角平分线的定义,证明出△CEF是直角三角形是解决本题的关键.
综合题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )