试题
题目:
如图,在△ABC中,AB=AC=5,BC=6,CE⊥AB于E,则腰上的高CE的长为
4.8
4.8
.
答案
4.8
解:作BC边上的高AF,
∵AB=AC=5,BC=6,
∴BF=CF=3,
∴由勾股定理得:AF=4,
∵CE⊥AB于E,
∴S△ABC=
1
2
AB·EC=
1
2
BC·AF=
1
2
×5CE=
1
2
×6×4
得:CE=4.8
故答案为4.8.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形的面积;勾股定理.
作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CE的长.
本题考查了等腰三角形、勾股定理及三角形的面积的知识,特别是利用面积相等的方法求一边上的高的方法一定要掌握.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )