试题
题目:
如图,在△ABC中,∠C=90°,AD是角平分线,AC=6,BC=8,则D到AB的距离是
3
3
.
答案
3
解:如图,过点D作DE⊥AB于E,
∵AC=6,BC=8,
∴AB=
6
2
+
8
2
=10,
∵∠C=90°,AD是∠BAC的角平分线,
∴CD=DE,
在△ACD和△AED中,
AD=AD
CD=DE
,
∴△ACD≌△AED(HL),
∴AE=AC=6,
BE=AB-AE=10-6=4,
设DE=x,
则BD=8-x,
在Rt△BDE中,DE
2
+BE
2
=BD
2
,
∴x
2
+4
2
=(8-x)
2
,
解得x=3,即DE=3.
故答案为:3.
考点梳理
考点
分析
点评
角平分线的性质;勾股定理.
过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CD=DE,然后利用“HL”证明△ACD和△AED全等,根据全等三角形对应边相等可得AE=AC,表示出BE,设DE=x,表示出BD,然后利用勾股定理列式计算即可得解.
本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形和直角三角形是解题的关键
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )