试题
题目:
如图,矩形ABCD中,AB=4,BC=8,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是
10
10
.
答案
10
解:根据翻折的性质可知:∠EBD=∠DBC,
又∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠EBD,
∴BE=DE,
设BE=DE=x,
∴AE=8-x,
∵四边形ABCD是矩形,
∴∠A=90°,
∴AE
2
+AB
2
=BE
2
,
(8-x)
2
+4
2
=x
2
,
x=5,
∴S
△EDB
=
1
2
×5×4=10.
故答案为:10.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);三角形的面积;等腰三角形的判定与性质;勾股定理.
易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.
本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.
计算题.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )