试题
题目:
如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一个格点C,则以A、B、C三点为顶点能构成等腰三角形的概率是
8
25
8
25
.
答案
8
25
解:如图所示只有C点在这8个点的位置,A、B、C三点为顶点才能构成等腰三角形,
∴以A、B、C三点为顶点能构成等腰三角形的概率是:
8
25
.
故答案为:
8
25
.
考点梳理
考点
分析
点评
概率公式;等腰三角形的判定;勾股定理.
根据等腰三角形的性质得出C点所在位置,进而得出答案即可.
本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
,难度适中.
找相似题
(2013·黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )
(2013·眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE
2
+DC
2
=DE
2
,
其中正确的有( )个.
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是( )